
38th International Symposium on Automation and Robotics in Construction (ISARC 2021) 

Detecting Hook Attachments of a Safety Harness Using 

Inertial Measurement Unit Sensors 

Hoonyong Leea, Namgyun Kima, and Changbum Ryan Ahnb* 

aDepartment of Architecture, College of Architecture, Texas A&M University, Texas, USA 
b* Department of Architecture and Architectural Engineering, Seoul National University, Seoul, South Korea 

E-mail: onarcher@tamu.edu, ng1022.kim@tamu.edu, cbahn@snu.ac.kr 

 

Abstract 

Construction workers are required to wear a 

safety harness while working at height, and safety 

managers need to ensure that a safety hook is 

attached to proper anchorage points to prevent falls 

from height. However, it is difficult for the managers 

to monitor all the worker’s hook attachments 

continuously and remotely in dynamic workplace 

environments. This study developed an approach to 

detect an individual worker’s hook attachments by 

assessing the relative movements between the hook 

and the worker’s body. An Inertial Measurement 

Unit sensor was attached to the hook and the body 

strap to monitor the relative movements. The 

collected IMU data was transformed into image data 

by Markov Transition Field. The detection algorithm 

was developed based on the convolution neural 

networks that classify the worker’s postures, 

activities, and hook attachments simultaneously, and 

the developed detection system provided classification 

accuracies of 86.40%, 86.97%, and 96.58, respectively. 

The results validated that the relative movement 

between the hook and the worker’s body is a key 

feature for hook attachment detection. 
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1 Introduction 

Falls from height (FFH) have been identified as a 

significant source of fatal accidents at construction sites 

[1]. In order to protect workers from FFH, some 

prevention measures have been proposed [2]. For 

example, the use of a safety harness is required while 

working at height. However, workers could often be 

reluctant to use a safety harness because of non-

compliance and restrictions to movement [3]. Although 

construction worker education and training are effective 

ways to address the reluctance, these are not always 

effective entirely [4,5]. Real-time monitoring and 

warning of the improper use of a safety harness would 

contribute to change workers’ safety behaviors. One of 

the safety manager’s tasks is to frequently monitor 

workers and site conditions to get real-time data through 

direct observation and interaction with workers [6]. 

Although a safety manager should identify workers who 

do not properly use a safety harness in a hazardous zone 

(e.g., a roof and top floor), it would be a challenge to 

monitor all the workers who are working at height from 

the ground level, continuously and remotely. 

In recent years, advances in sensing technology and 

machine learning algorithms have enabled safety 

managers to monitor the activity and physical status of 

workers in real-time [7]. Previous studies have applied 

these technical improvements to develop detection 

systems for the use of a safety harness. A previous study 

[8] developed an approach that uses an image 

classification algorithm to detect whether a worker wears 

a safety harness. In this study images of workers taken 

with a monocular camera were used, but the quality of 

image data is affected by environmental factors (e.g., 

weather and light) that would degrade the detection 

performance. In another previous study [9], based on the 

distance between the hook and the lifeline, it was 

detected whether the worker attached the safety hook to 

the lifeline. This approach used Bluetooth Low Energy 

beacons to measure the distance based on the worker’s 

location. If the distance is less than the threshold, the 

safety hook is considered to be attached to the lifeline. 

However, a close distance between the hook and the 

lifeline does not always guarantee the connection. 

In this context, this study aims to develop a novel 

detection approach for the proper use of a safety harness. 

The sensing sources of the developed approach were 

safety hook and worker’s bodily movements, measured 

by wearable Inertial Measurement Unit (IMU) sensors. 

In this current study, a distinct body movement pattern 

according to postures and activities and a distinct hook 

movement pattern according to attachments were 

assessed. The developed system simultaneously detects 

the worker’s posture, activity, and hook attachment. 

Therefore, the main contribution of this study is to detect 
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the proper use of a safety harness while undertaking 

various construction tasks at the workplace.  

2 Background 

2.1 Wearable Sensors in Construction 

Worker Safety 

Various sensor technologies have been used to 

improve the safety of workers on construction sites. For 

example, Real-Time Locating Systems (RTLS) have 

been implemented by Radio-Frequency Identification 

(RFID) and Bluetooth Low Energy (BLE) technologies 

[10]. These systems consist of a transmitter and several 

receivers. The transmitter is attached to a worker while 

transmitting radio signals with an identification number, 

and the receivers are attached to a moving object, PPE, 

or located in hazardous areas. RTLS measures the current 

location of the worker based on the distance between the 

transmitter and the receiver. One parameter for 

calculating the distance is the Received Signal Strength 

Indicator (RSSI), which measures the attenuated power 

at the receiver. For construction safety management, 

RTLS has been used to warn workers when entering 

hazardous zones (e.g., a roof and top floor) or 

approaching dangerous moving objects (e.g., heavy 

machines) [11]. RTLS can warn workers of danger even 

in blind spots because radio signals can penetrate or 

reflect from some obstacles to reach the receivers in non-

line of sight environments [12]. Additionally, the 

transmitter can be attached to PPE, such as a safety 

helmet or harness to monitor whether individual workers 

wear PPE in the workplace [9]. However, since RFID and 

BLE beacons have a limited coverage area and signal 

propagation can be affected by environmental factors, the 

accuracy can decrease as the distance between beacons 

increases. 

Physical response measurement systems have been 

also implemented to improve worker safety management. 

IMU sensors have frequently been used to assess workers’ 

physical changes while undertaking construction tasks. A 

typical IMU sensor consists of an accelerometer and a 

gyroscope. The IMU sensor is attached to the worker’s 

body part and measures the movement of the body part 

in three-axis acceleration and angular velocity. Most 

construction tasks require physical demands without 

sufficient rest, which can lead to work-related 

musculoskeletal disorders (WMSDs) [13]. Therefore, 

measuring a worker’s physical response to repetitive and 

prolonged construction tasks would help prevent 

overexertion injuries. Measured bodily movements were 

used to detect awkward postures [14,15], excessive load 

carrying that produced distinct patterns of bodily 

movements [16]. Gait kinematics were also measured by 

IMU sensors to assess exposure to slip, trip, and fall (STF) 

hazards that generated abnormal gait patterns [17]. 

Because IMU-based monitoring systems directly record 

the worker’s bodily movement, their performances are 

less affected by environmental factors (e.g., light or 

weather). However, the bodily movements could be 

different for each worker and may vary depending on the 

worker’s physical status, which may cause performance 

variations depending on training data. 

2.2 Monitoring Use of Safety Harness in 

Construction 

A previous study [8] developed an approach to detect 

whether workers are wearing their safety harnesses using 

an image classification algorithm. The developed 

approach has two phases: (1) worker presence detection 

and (2) safety harness identification. Although this 

approach provided 99% and 80% precision performance 

on phases 1 and 2, respectively, this approach did not 

detect hook attachments. Even if a worker wears a 

harness, the worker may not properly use the safety 

harness. For example, the safety hook would be attached 

to the worker’s body or placed on the ground. Therefore, 

it is necessary to monitor not only wearing a safety 

harness but also properly using the safety harness. 

Another previous study [9] developed a system 

detecting the proper use of a safety harness using BLE 

technologies. This system detected whether the safety 

hook is attached to the lifeline hook according to the 

distance between the lifeline hook and the worker who 

needs to attach the safety hook. Once the worker attaches 

the safety hook to the lifeline hook, the worker’s location 

would be identical to the lifeline hook. A BLE receiver 

was attached to the worker’s safety hook and a BLE 

beacon was attached to the lifeline hook. The distance 

between these BLE devices was calculated based on 

RSSI. Another BLE beacon was located in the hazardous 

zone where the worker must attach the safety hook to the 

lifeline. The third BLE beacon was placed at an interval 

of 2m, where the working began at height. Due to the 

limited coverage area of the BLE beacons, a distance 

between 1 and 2 m was required between beacons. 

Although this system was validated in a field experiment, 

this approach had some practical limitations. Multiple 

BLE beacons are required to cover the space, and those 

beacons need to be relocated when the working 

environment changes. Also, the distance-based detection 

approach would produce false detection if the worker is 

working near the lifeline without attaching the safety 

hook to the lifeline. 

In this context, this study developed a new detection 

system for the proper use of a safety harness. This study 

measured the hook and the bodily movements using IMU 

sensors attached to the hook and body strap and found 

that the hook movement is affected by both the worker’s 

bodily movement and hook attachment points (e.g., 
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attaching to a rigid structure and the worker’s body or 

placing on the ground). Therefore, the hook attachment 

can be detected by assessing the relative movements 

between the worker’s body and the safety hook. 

3 Methodology 

3.1 Data Collection 

Five subjects participated in the experiment to collect 

IMU data of the safety hook and bodily movements while 

performing different activities: (1) walking, (2) moving 

bricks, and (3) using a drill machine. While performing 

the activities, the safety hook was attached at several 

points: (1) attached to scaffolding, (2) attached to the 

body strap (chest), and (3) placed on the ground. Also, 

moving bricks and using a drill machine were performed 

by two postures: (1) standing and (2) kneeling. Therefore, 

18 cases of relative movements between the hook and the 

body were collected from each subject (2 postures, 3 

activities, and 3 attachment points). Figure 1 shows an 

example of moving bricks while standing with a 

scaffolding attachment. The subjects performed each 

activity repeatedly for 3 minutes. They did not change 

their locations while moving bricks and using a drill 

machine, but randomly changed locations when walking. 

While the hook was always attached to the chest for a 

body strap attachment, the subjects attached the safety 

hook to various parts of the scaffolding. 

During the experiment, an IMU sensor was attached 

to the safety hook and the body strap (back), indicated by 

blue circles in Figure 1. The IMU sensors collected 

acceleration and angular velocity data along three axes at 

a 50 Hz sampling rate. Figure 2 shows the IMU data 

collected while moving bricks by kneeling—(a), (b), and 

(c) —and standing—(d), (e), and (f). For each hook 

attachment point, the hook IMU data show a distinct 

pattern, whereas the back-worn IMU data show a very 

similar pattern for the same posture. Moreover, different 

postures generate different patterns of hook IMU data 

even for an identical hook attachment point, (see Figure 

2(b) and (d)). Therefore, the hook IMU data depended on 

both the attachment point and the bodily movement 

related to activity and posture. 

This study assessed the unique relative movement 

between the hook and the subject’s body to detect hook 

attachments in various postures and activities. 

 

Figure 1. Moving bricks with a scaffolding 

attachment 

 

 

Figure 2. Collected IMU data while moving bricks: (a) keeling with a scaffolding attachment; (b) kneeling with 

a body attachment; (c) kneeling with the hook on the ground; (d) standing with a scaffolding attachment; (e) 

standing with a body attachment; (f) standing with the hook on the ground 

3.2 Preprocessing 

The collected IMU data were first filtered by a fifth-

order low-pass filter with a 10 Hz cut-off frequency to 

remove high-frequency noise. The denoised IMU data 

were sampled by a 3-second moving window with a 2-
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second overlap. A previous study has demonstrated that 

transforming time-series data into image data using 

Markov Transition Fields and extracting features by 

Convolutional Neural Networks (CNN) provides more 

stable and better classification results than raw data [18]. 

This study also transformed each IMU sample to an MTF 

that generated a 128×128×6 tensor for each IMU sample, 

where 128×128 represents the size of the image data, and 

6 represents the number of channels composed of 3-axis 

acceleration and angular velocity data. Figure 3 shows 

examples of transformed image data for hook and back-

worn IMU data. Both image data were simultaneously 

used to detect hook attachments. 

 

Figure 3. Transformed image data: (a) hook IMU 

data and (b) back-worn IMU data 

3.3 Model Structure 

CNNs were used to build a model to classify postures, 

activities, and hook attachment points from the 

transformed image data. Figure 4 shows the model 

structure consisting of three classifiers, C1, C2, and C3, 

for the posture, activity, and hook attachment point, 

respectively. From the input data, four feature extractors, 

F1, F2, F3, and F4 extract features for each classifier. F1 

and F2 extract features from the image data collected 

from the back and the hook, respectively. The extracted 

features by F1 are used to classify the worker’s postures 

by C1 and the features are also inputted to the next feature 

extractor, F3. The extracted features by F3 are inputted to 

C2 to classify the worker’s activity. Each set of features 

extracted by F1 and F2 is concatenated and inputted to F4. 

Also, each set of features extracted by F2 and F4 is 

concatenated and inputted to C3. Therefore, the 

developed model detects the worker’s posture, activity, 

and hook attachment at the same time. 

Tables 1 and 2 summarize the model structures of the 

feature extractors. Since the input data of F4 is the 

concatenated features of F1 and F2, the size of the input 

layer of F4 is twice that of F3. Table 3 shows the model 

structures of the classifiers. The output shape of the last 

dense layer means that each classifier classifies three 

different classes. 

During the training, the model is trained to reduce the 

combined classification loss of C1, C2, and C3, meaning 

that better classification accuracies on the posture and 

activity help to improve the classification of hook 

attachment points. 

 

Figure 4. Model structure 

Table 1. Model structures of F1 and F2 

Layer Output Shape 

Input Layer 128×128×6 

Convolution 128×128×32 

Max Pooling 42×42×32 

Batch Normalization 42×42×32 

Convolution 42×42×64 

Batch Normalization 42×42×64 

Max Pooling 21×21×64 

Dropout 21×21×64 

Batch Normalization 21×21×64 

Table 2. Model structures of F3 and F4 

Layer 
Output Shape 

F3 F4 

Input Layer 21×21×64 21×21×128 

Convolution 21×21×128 

Batch Normalization 21×21×128 

Max Pooling 10×10×128 

Dropout 10×10×128 

Batch Normalization 10×10×128 

Convolution 10×10×256 

Batch Normalization 10×10×256 

Max Pooling 5×5×256 

Dropout 5×5×256 

Batch Normalization 5×5×256 

Table 3. Model structures of C1, C2, and C3 

Layer 
Output Shape 

C1 C2 C3 

Input Layer 21×21×64 5×5×256 5×5×512 

Flatten 28224 6400 12800 

Dense    256 

Dense    512 

Dropout    512 
Batch Normalization    512 

Dense    3 
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4 Results 

70% of the total data were randomly selected as the 

training data (9,345 samples), and the remaining 30% of 

the total data were used as the testing data (4,005 

samples). The developed model was trained for 6,000 

epochs in a 10-batch size. The classification results 

provided 86.40% of posture, 86.97% of activity, and 

96.58% of hook attachment accuracies, respectively. 

While the back-worn IMU data were only used for the 

posture and activity classifications, the developed 

approach utilized both hook and back-worn IMU data to 

classify the hook attachment point. Therefore, the 

classification accuracy for the hook attachment was 

higher than that for the posture and activity 

classifications. 

Figure 5 shows the training curves for each 

classification accuracy. In this study, the approach was 

designed to reduce overfitting by applying kernel 

regularization, dropout layers, and batch normalization 

layers. However, the developed model was slightly 

overfitted for the posture classification as compared to 

the activity and hook attachment classifications. One 

reason for this overfitting issue could be related to the 

number of features extracted by each feature extractor 

because too many features may fit the training dataset but 

fail to be generalized to the test dataset. For the posture 

classification, the number of features extracted by F1 was 

28,224 while F3 extracted 6,400 features and F4 extracted 

12,800 features. 

The developed approach provided a relatively lower 

performance on the posture and activity detections than 

the hook attachment. Figure 6 shows the confusion 

matrix for each classification result. In the posture 

classification, the developed model misclassified some 

cases of kneeling and standing because similar bodily 

movements could occur between kneeling and standing. 

For example, while using a drill, subjects often did not 

bend their backs when both kneeling and standing. 

Conversely, while moving bricks, the subjects gradually 

bent their backs as they were being exhausted when both 

kneeling and standing. In the activity classification, some 

cases of moving bricks and using a drill machine were 

misclassified. For each posture, the two different 

activities were performed by moving arms mainly, which 

could generate invariant back movements for activity. In 

this case, similar patterns of the IMU data could be 

collected from the back, thereby reducing the overall 

performance of the activity classification. 

    

 

Figure 5. Training curves for (a) postures, (b) 

activities, and (c) hook attachments 

   

 

Figure 6. Confusion matrix of classification 

results 

5 Discussion 

5.1 Methodological Contribution 

The previous study [9] detected the proper use of a 

safety harness based on the distance between the safety 

hook and the lifeline. Therefore, the previous approach 

would identify lifeline attachment whenever the worker 

is closed to the lifeline regardless of the hook attachment. 

However, the current study detected the proper use of a 

safety harness based on the relative movement between 

the hook and the worker’s body. Since this approach 

directly detects the hook attachment, the developed 

approach could monitor the proper use of a safety harness 

wherever they are working. 

 Additionally, the previous approach would require 

further development to monitor multiple workers because 

the distance between the lifeline and the safety hook is 
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the calculated distance of a pair of BLE beacons. 

Therefore, if multiple workers are working at height, 

more BLE beacons are required for each worker. The 

previous approach would need to detect each worker’s 

pair of beacons and filter the signals receiving from other 

beacons. However, in this current study, hook 

attachments were detected based on the IMU data 

collected from an individual worker’s safety harness. 

Therefore, the developed system is able to monitor the 

safety hook attachment individually, allowing to monitor 

multiple workers simultaneously without further 

methodological improvement. 

5.2 Practical Application 

The developed system detected hook attachments by 

utilizing attachable IMU sensors to the existing safety 

harness. This implementation would make it easy to 

deploy this detection system to construction sites without 

additional devices. In addition, a LED bulb can be 

attached to a safety harness and indicate the status of the 

hook attachment. This application would empower safety 

managers to monitor the proper use of the safety harness 

from a distance without any communication networks. 

The developed system could monitor construction 

workers for a long period without causing intrusive 

associated with wearing additional sensors by attaching 

IMU sensors to the safety harness. The application of the 

developed system could allow safety managers to 

identify workers at risk of FFH as repeated improper use 

of the safety harness can be a precursor to FFH. This 

high-risk worker identification would serve as objective 

data for worker education and training that could 

effectively change the safety behavior of high-risk 

workers. 

6 Conclusion 

The developed approach provided an accuracy of 

96.58% for hook attachment detection, and the approach 

provided a consistent performance on different activities 

and postures. The detection approach also provided 

classification accuracies of 86.40% and 86.97% for the 

postures and the activity, respectively. The hook 

movement is affected not only by the attachment point 

but also by the worker’s posture and activity. These 

results validated that the relative movement between the 

hook and the worker’s body is a key feature for hook 

attachment detection. 

The developed system, in this study, was 

implemented by two IMU sensors that can be attachable 

to existing safety harnesses, allowing this system to be 

extended as the construction environment evolves in 

practice. By applying the developed detection system to 

construction sites, it would be possible to reduce FFH and 

to increase construction safety by reliably identifying 

high-risk workers to FFH.  

However, the performance of this learning-based 

approach would be affected by the quality of the training 

data and have practical limitations as the training data 

needs to be collected from each worker. Therefore, a 

subject-independent approach needs to be developed for 

further study. 
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